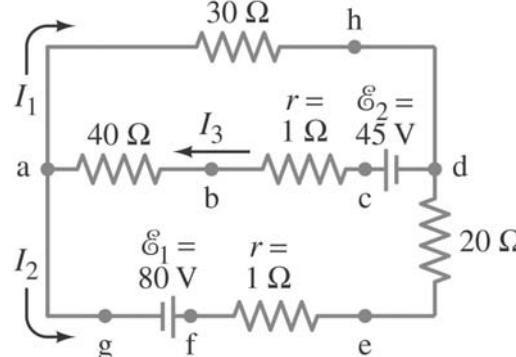


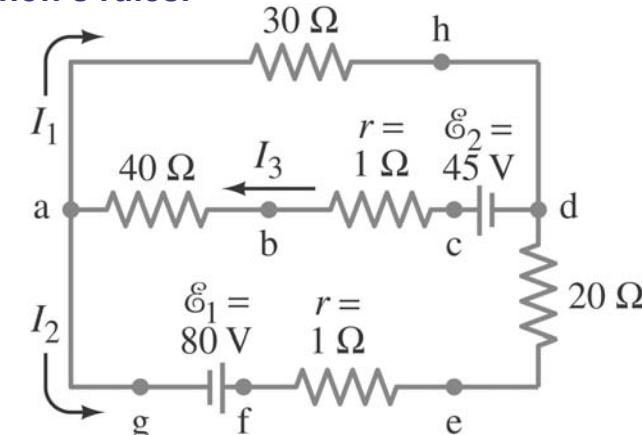
Lecture (09) DC Circuits II


By:

Dr. Ahmed ElShafee

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

- **Junction rule:** The sum of currents entering a junction equals the sum of the currents leaving it (i.e., charge does not pile up).


- $I_{in} = I_{out}$
- $I_3 = I_1 + I_2$
- $I_3 - I_2 - I_1 = 0$

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Kirchhoff's rules and DC currents

- Some circuits cannot be broken down into series and parallel connections. For these circuits we use Kirchhoff's rules.

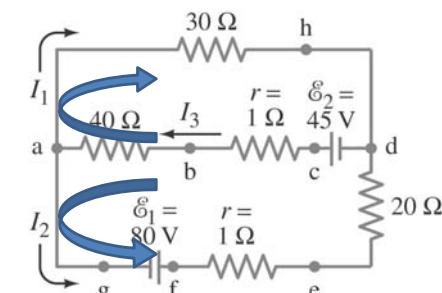
Top loop

$$45 - (40 + 1)I_3 - (30)I_1 = 0$$

$$45 - 41I_3 - 30I_1 = 0$$

$$I_1 = 1.5 - 1.37I_3 \rightarrow (1)$$

Bottom loop


$$45 + 80 - (1 + 20)I_2 - (41)I_3 = 0$$

$$125 - 21I_2 - 41I_3 = 0$$

$$I_2 = 5.95 - 1.95I_3 \rightarrow (2)$$

Node

$$I_3 = I_2 + I_1 \rightarrow (3)$$

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Substitute 1, and 2 in 3

$$I_3 = (1.5 + 5.95) - (1.37 + 1.95)I_3$$

$$I_3 = 7.45 - 3.32 I_3$$

$$4.32 I_3 = 7.45$$

$$I_3 = 1.72 \text{ Amp} \rightarrow$$

from 1

$$I_1 = 1.5 - (1.37 \times 1.72) = -0.86 \text{ Amp}$$

from 2

$$I_2 = 5.95 - (1.95 \times 1.72) = 2.6 \text{ Amp}$$

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

left

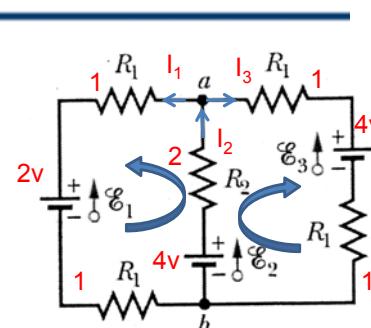
$$-2 - 2I_1 + 4 - 2I_2 = 0$$

$$2 - 2I_1 - 2I_2 = 0$$

$$I_1 = 1 - I_2$$

right

$$-4 - 2I_3 + 4 - 2I_2 = 0$$


$$I_3 = -I_2$$

node

$$I_2 = I_1 + I_3$$

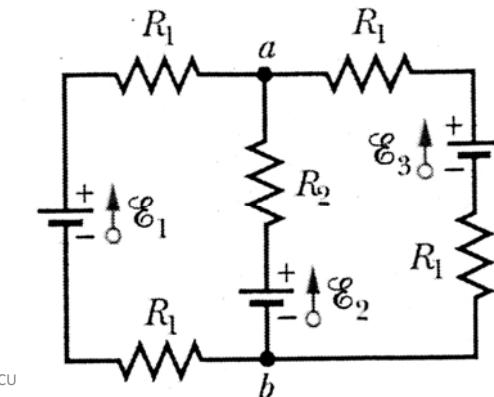
$$I_2 = 1 - I_2 - I_2$$

$$I_2 = \frac{1}{3} \text{ amp}$$

example

• Using Kirchhoff's rules.

a) Calculate the currents (call them I_1 , I_2 , and I_3) through the three batteries of the circuit in the figure.


b) What is $V_a - V_b$?

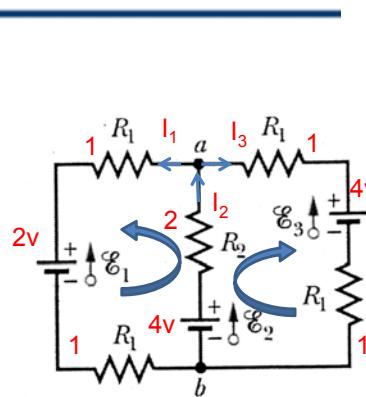
$$\xi_1 = 2.0 \text{ V}$$

$$\xi_2 = \xi_3 = 4.0 \text{ V}$$

$$R_1 = 1.0 \Omega$$

$$R_2 = 2.0 \Omega$$

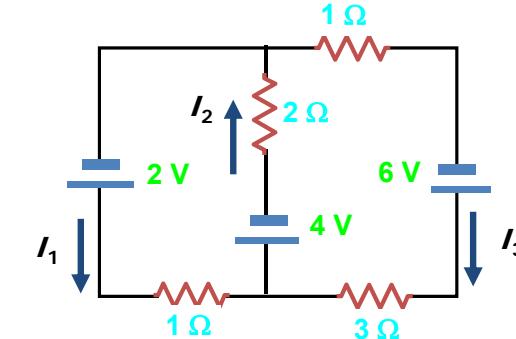
Dr. Ahmed ElShafee, ACU


from 2:

$$I_3 = -\frac{1}{3} \text{ amp}$$

from 1:

$$I_1 = 1 - \frac{1}{3} = \frac{2}{3} \text{ amp}$$


- $V_{R2} = I_2 \times 2 = \frac{1}{3} \times 2 = \frac{2}{3}$ volt
- $V_{ab} = 4 - \frac{2}{3} = 3 \frac{1}{3}$ volt

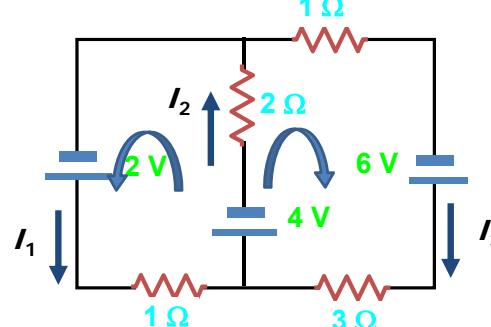
MCQ

- Which of the equations is valid for the circuit below?

- $2 + I_1 + 2I_2 = 0$
- $2 + 2I_1 + 2I_2 + 4I_3 = 0$
- $2 + I_1 - 4 + 2I_2 = 0$
- $I_3 - 4 + 2I_2 + 6 = 0$
- $2 + I_1 + 3I_3 - 6 = 0$

1

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II


1

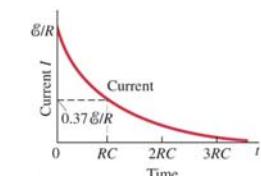
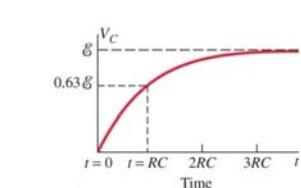
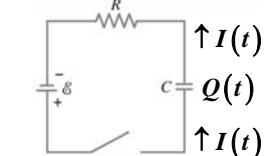
Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

MCQ

- Which of the equations is valid for the circuit below?

- $2 + I_1 + 2I_2 = 0$
- $2 + 2I_1 + 2I_2 + 4I_3 = 0$
- $2 + I_1 - 4 + 2I_2 = 0$
- $I_3 - 4 + 2I_2 + 6 = 0$
- $2 + I_1 + 3I_3 - 6 = 0$

11




Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

11

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Circuits Containing Resistor and Capacitor (RC Circuits charging)

- When the switch is closed, the capacitor will begin to charge.
- As it does, the voltage across it increases, and the current through the resistor decreases.
- After the switch S closes in the RC circuit shown in (a),
- the voltage across the capacitor increases with time as shown in (b),
- and the current through the resistor decreases with time as shown in (c).

Example

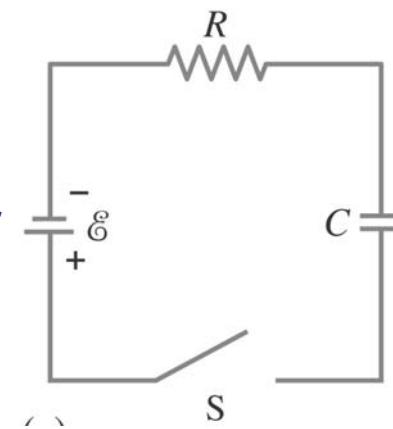
- The charges across the capacitor is

$$Q_c = \varepsilon C (1 - e^{-t/RC})$$

- The voltage across the capacitor is $V_c = Q/C$:

$$V_c = \varepsilon (1 - e^{-t/RC})$$

- The current flow through capacitor


$$I_c = \frac{\varepsilon}{R} e^{-t/RC}$$

- Time constant

$$\tau = RC$$

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

- The capacitance in the circuit shown is $C = 0.30 \mu F$, the total resistance is $20 k\Omega$, and the battery emf is $12 V$. Determine (a) the time constant, (b) the maximum charge the capacitor could acquire, (c) the time it takes for the charge to reach 99% of this value, (d) the current I when the charge Q is half its maximum value, (e) the maximum current, and (f) the charge Q when the current I is 0.20 its maximum value.

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

$$\begin{aligned} C &= 0.3 \mu F \\ R &= 20 k\Omega \\ \varepsilon &= 12V \end{aligned}$$

$$\begin{aligned} Q_c &= \varepsilon C (1 - e^{-t/RC}) \\ V_c &= \varepsilon (1 - e^{-t/RC}) \\ I_c &= \frac{\varepsilon}{R} e^{-t/RC} \end{aligned}$$

a. $\tau = RC = 20 \times 10^3 \times 0.3 \times 10^{-6} = 6 \times 10^{-3} \text{ sec}$

b. $Q_{max} = \varepsilon C = 12 \times 0.3 \times 10^{-6} = 3.6 \times 10^{-6} \text{ column}$

c. Tim of 99% charging

$$Q_{99\%} = 0.99 Q_{max} = 0.99 \varepsilon C = \varepsilon C (1 - e^{-t/RC})$$

$$0.99 = 1 - e^{-t/RC}$$

$$e^{-t/RC} = 0.01$$

$$\frac{t}{RC} = -\ln 0.01 = 4.06$$

$$t = 4.6 \times RC = 4.6 \times 6 \times 10^{-3} = 0.0276 \text{ sec}$$

$$\begin{aligned} C &= 0.3 \mu F \\ R &= 20 k\Omega \\ \varepsilon &= 12V \end{aligned}$$

d. Current when $Q = 0.5 Q_{max}$

$$Q = 0.5 Q_{max} = 0.5 \varepsilon C$$

$$Q = \varepsilon C (1 - e^{-t/RC})$$

$$0.5 = (1 - e^{-t/RC})$$

$$e^{-t/RC} = 0.5$$

$$I = \frac{\varepsilon}{R} e^{-t/RC} = \frac{\varepsilon}{R} \times 0.5 = \frac{12}{20 \times 10^3} \times 0.5 = 3 \times 10^{-4} \text{ amp}$$

e. Max current

$$I_{max} = \frac{\varepsilon}{R} = \frac{12}{20 \times 10^3} = 6 \times 10^{-4} \text{ amp}$$

$$\begin{aligned} Q_c &= \varepsilon C (1 - e^{-t/RC}) \\ V_c &= \varepsilon (1 - e^{-t/RC}) \\ I_c &= \frac{\varepsilon}{R} e^{-t/RC} \end{aligned}$$

$$C = 0.3 \mu F$$

$$R = 20 \text{ kOhm}$$

$$\varepsilon = 12V$$

$$Q_c = \varepsilon C (1 - e^{-t/RC})$$

$$V_c = \varepsilon (1 - e^{-t/RC})$$

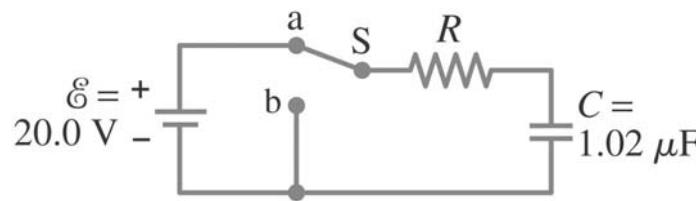
$$I_c = \frac{\varepsilon}{R} e^{-t/RC}$$

f. Q when $I=0.2$ I_{max}

$$I = \frac{\varepsilon}{R} e^{-t/RC} = I_{max} e^{-t/RC} = I_{max} 0.2$$

$$e^{-t/RC} = 0.2$$

$$Q_c = \varepsilon C (1 - e^{-t/RC}) = \varepsilon C (1 - 0.2) = \varepsilon C \times 0.8$$

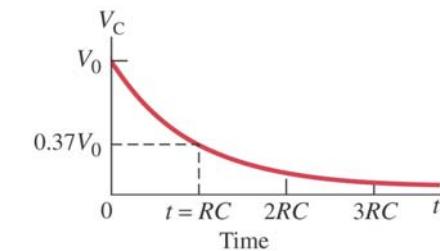
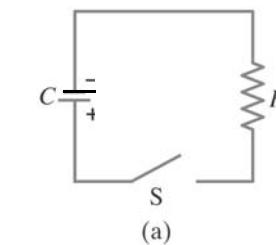

$$Q_c = 12 \times 0.3 \times 10^{-6} \times 0.8 = 2.88 \times 10^{-6} \text{ C}$$

١٧

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Example

- In the RC circuit shown, the battery has fully charged the capacitor, so $Q_0 = CV_0$. Then at $t = 0$ the switch is thrown from position a to b. The battery emf is 20.0 V, and the capacitance $C = 1.02 \mu F$. The current I is observed to decrease to 0.50 of its initial value in 40 μs . (a) What is the value of R , the charge on the capacitor, at $t = 0$? (b) What is the value of R ? (c) What is Q at $t = 60 \mu s$?

١٩

Circuits Containing Resistor and Capacitor (RC Circuits discharging)

- If an isolated charged capacitor is connected across a resistor, it discharges:

- V_0 is the initial voltage drop on the capacitor
- $V_c(t) = V_0 e^{-t/RC}$
- $I_c(t) = \frac{V_0}{R} e^{-t/RC}$
- $Q_c(t) = Q_0 e^{-t/RC}$

١٨

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

$$\varepsilon = V_0 = 20V$$

$$C = 1.02 \mu F$$

$$I = 0.5 I_0 @ 40 \mu sec$$

$$V_c(t) = V_0 e^{-t/RC}$$

$$I_c(t) = \frac{V_0}{R} e^{-t/RC}$$

$$Q_c(t) = Q_0 e^{-t/RC}$$

a. Q @ $t=0$

$$Q_0 = C V_0 = 1.02 \times 10^{-6} \times 20 = 2.04 \times 10^{-5} \text{ C}$$

b. R ?

$$t = 40 \mu sec \rightarrow I = 0.5 I_0$$

$$I_c(t) = \frac{V_0}{R} e^{-t/RC} = 0.5 I_0$$

$$e^{-t/RC} = 0.5$$

$$\frac{t}{RC} = -\ln 0.5 = 0.693$$

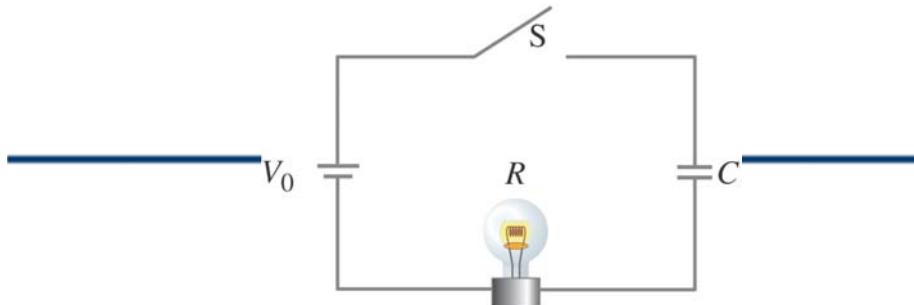
$$R = \frac{t}{0.693 \times C} = \frac{4 \times 10^{-6}}{0.693 \times 1.02 \times 10^{-6}} = 57 \text{ ohm}$$

٢٠

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

$$\begin{aligned}\varepsilon &= V_0 = 20V \\ C &= 1.02 \mu F \\ I &= 0.5 I_0 @ 40 \mu Sec\end{aligned}$$

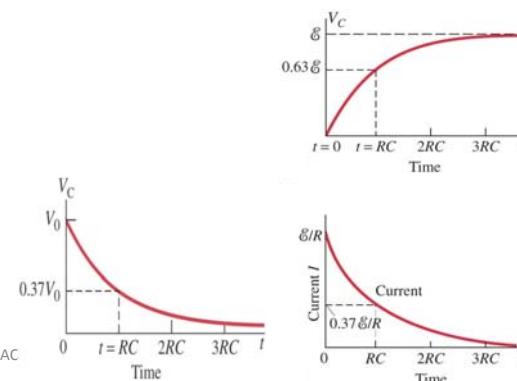
$$\begin{aligned}V_c(t) &= V_0 e^{-t/RC} \\ I_c(t) &= \frac{V_0}{R} e^{-t/RC} \\ Q_c(t) &= Q_0 e^{-t/RC}\end{aligned}$$


C. Q=? @ t=60usec

$$Q_c(t) = Q_0 e^{-t/RC}$$

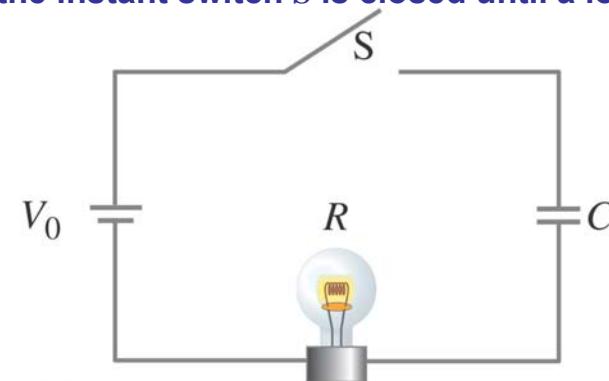
$$Q = 2.04 \times 10^{-5} \times e^{\frac{-60 \times 10^{-6}}{57 \times 1.02 \times 10^{-6}}} = 7.3 \mu C$$

٢١


Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

- When the switch is closed, the current is large and the bulb is bright.
- As the capacitor charges, the bulb dims; once the capacitor is fully charged the bulb is dark.

٢٢

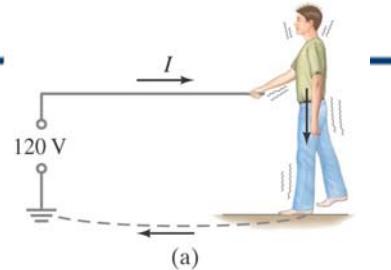

Dr. Ahmed ElShafee, ACU

Example

Bulb in *RC* circuit.

- In the circuit shown, the capacitor is originally uncharged. Describe the behavior of the lightbulb from the instant switch S is closed until a long time later.

٢٢

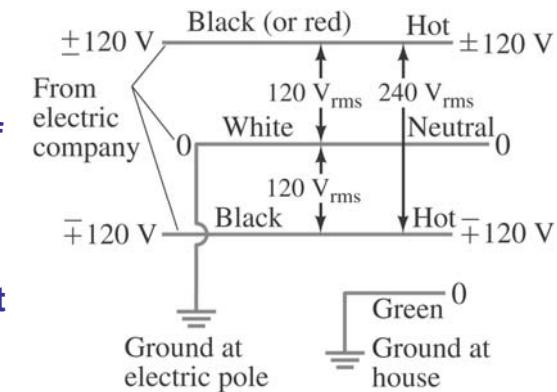

Electric Hazards

- Most people can “feel” a current of 1 mA; a few mA of current begins to be painful.
- Currents above 10 mA may cause uncontrollable muscle contractions
- Currents around 100 mA passing through the body cause death by ventricular fibrillation.
- Higher currents may not cause fibrillation, but can cause severe burns.
- Household voltage can be lethal if you are wet and in good contact with the ground. Be careful!

٢٣

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

- A person receiving a shock has become part of a complete circuit.

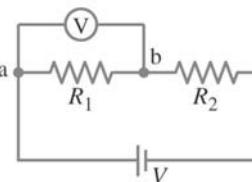
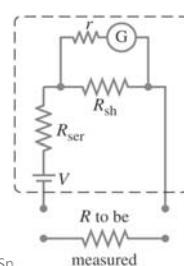
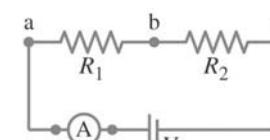
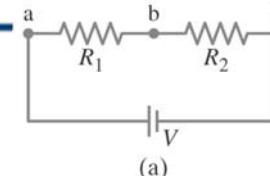


٢٥

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

- The safest plugs are those with three prongs; they have a separate ground line.

- Here is an example of household wiring – colors can vary, though! Be sure you know which is the hot wire before you do anything.

٢٦

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Am-, Volt-, and Ohm-meters

- An ammeter must be in series with the current it is to measure;
- a voltmeter must be in parallel with the voltage it is to measure.
- An ohmmeter measures resistance; it requires a battery to provide a current.

٢٧

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

٢٨

Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II